Nonlinear Schrödinger equation on metric graphs COMPLEX Doctoral School

Damien Galant

CERAMATHS/DMATHS Département de Mathématique
Université Polytechnique
Hauts-de-France
Université de Mons F.R.S.-FNRS Research Fellow

Tuesday 15 November 2022

1 Metric graphs

2 Ground states for the nonlinear Schrödinger equation

What is a metric graph?

A metric graph is made of vertices

What is a metric graph?

A metric graph is made of vertices and of edges joining the vertices or going to infinity.

What is a metric graph?

A metric graph is made of vertices and of edges joining the vertices or going to infinity.

- metric graphs: the length of edges are important.

What is a metric graph?

A metric graph is made of vertices and of edges joining the vertices or going to infinity.

- metric graphs: the length of edges are important.
- the edges going to infinity are halflines and have infinite length.

Constructions based on halflines

The halfline

Constructions based on halflines

The halfline
The line

Constructions based on halflines

The halfline

The line

The 5-star graph

Constructions based on halflines

The halfline

The 5-star graph

The line

The 6-star graph

Functions defined on metric graphs

A metric graph \mathcal{G} with three edges e_{0} (length 5), e_{1} (length 4) et e_{2} (length 3)

Functions defined on metric graphs

A metric graph \mathcal{G} with three edges e_{0} (length 5), e_{1} (length 4) et e_{2} (length 3), a function $f: \mathcal{G} \rightarrow \mathbb{R}$

Functions defined on metric graphs

A metric graph \mathcal{G} with three edges e_{0} (length 5), e_{1} (length 4) et e_{2} (length 3), a function $f: \mathcal{G} \rightarrow \mathbb{R}$, and the three associated real functions

Functions defined on metric graphs

A metric graph \mathcal{G} with three edges e_{0} (length 5), e_{1} (length 4) et e_{2} (length 3), a function $f: \mathcal{G} \rightarrow \mathbb{R}$, and the three associated real functions

$$
\int_{\mathcal{G}} f \mathrm{~d} x \stackrel{\text { def }}{=} \int_{0}^{5} f_{0}(x) \mathrm{d} x+\int_{0}^{4} f_{1}(x) \mathrm{d} x+\int_{0}^{3} f_{2}(x) \mathrm{d} x
$$

Why studying metric graphs?

Modeling structures where only one spatial direction is important.

A «fat graph» and the underlying metric graph

An application: atomtronics

- A boson ${ }^{1}$ is a particle with integer spin.

[^0]
An application: atomtronics

- A boson ${ }^{1}$ is a particle with integer spin.
- When identical bosons are cooled down to a temperature very close to absolute zero, they occupy a unique lowest energy quantum state.

[^1]
An application: atomtronics

- A boson ${ }^{1}$ is a particle with integer spin.
- When identical bosons are cooled down to a temperature very close to absolute zero, they occupy a unique lowest energy quantum state.
- This phenomenon is known at Bose-Einstein condensation.

[^2]
An application: atomtronics

- A boson ${ }^{1}$ is a particle with integer spin.
- When identical bosons are cooled down to a temperature very close to absolute zero, they occupy a unique lowest energy quantum state.
- This phenomenon is known at Bose-Einstein condensation.
- This is really remarkable: macroscopic quantum phenomenon!

[^3]
An application: atomtronics

- A boson ${ }^{1}$ is a particle with integer spin.
- When identical bosons are cooled down to a temperature very close to absolute zero, they occupy a unique lowest energy quantum state.
- This phenomenon is known at Bose-Einstein condensation.
- This is really remarkable: macroscopic quantum phenomenon!
- Since 2000: emergence of atomtronics, which studies circuits guiding the propagation of ultracold atoms.

[^4]
The minimization problem

- We model the circuit in which the condensate is confined by a metric graph \mathcal{G}.

The minimization problem

- We model the circuit in which the condensate is confined by a metric graph \mathcal{G}.
- We want to know what will be the common quantum state of a condensate confined in \mathcal{G} for a given "quantity of matter" μ.

The minimization problem

- We model the circuit in which the condensate is confined by a metric graph \mathcal{G}.
■ We want to know what will be the common quantum state of a condensate confined in \mathcal{G} for a given "quantity of matter" μ.
- We work on the space

$$
H_{\mu}^{1}(\mathcal{G})=\left\{u: \mathcal{G} \rightarrow \mathbb{R} \mid u \text { is continuous, } u, u^{\prime} \in L^{2}(\mathcal{G}), \int_{\mathcal{G}}|u|^{2}=\mu\right\}
$$

The minimization problem

- We model the circuit in which the condensate is confined by a metric graph \mathcal{G}.
■ We want to know what will be the common quantum state of a condensate confined in \mathcal{G} for a given "quantity of matter" μ.
- We work on the space

$$
H_{\mu}^{1}(\mathcal{G})=\left\{u: \mathcal{G} \rightarrow \mathbb{R} \mid u \text { is continuous, } u, u^{\prime} \in L^{2}(\mathcal{G}), \int_{\mathcal{G}}|u|^{2}=\mu\right\}
$$

and we consider the energy minimization problem

$$
\inf _{u \in H_{\mu}^{1}(\mathcal{G})} \frac{1}{2} \int_{\mathcal{G}}\left|u^{\prime}\right|^{2}-\frac{1}{p} \int_{\mathcal{G}}|u|^{p}
$$

where $2<p<6$

The minimization problem

- We model the circuit in which the condensate is confined by a metric graph \mathcal{G}.
■ We want to know what will be the common quantum state of a condensate confined in \mathcal{G} for a given "quantity of matter" μ.
- We work on the space

$$
H_{\mu}^{1}(\mathcal{G})=\left\{u: \mathcal{G} \rightarrow \mathbb{R} \mid u \text { is continuous, } u, u^{\prime} \in L^{2}(\mathcal{G}), \int_{\mathcal{G}}|u|^{2}=\mu\right\}
$$

and we consider the energy minimization problem

$$
\inf _{u \in H_{\mu}^{1}(\mathcal{G})} \frac{1}{2} \int_{\mathcal{G}}\left|u^{\prime}\right|^{2}-\frac{1}{p} \int_{\mathcal{G}}|u|^{p}
$$

where $2<p<6$ (Bose-Einstein: $p=4$).

Infimum vs minimum

Then

$$
\inf _{\mathbb{R}} f=0
$$

but the infimum is not attained (i.e. is not a minimum).

The differential system

If a function $u \in H_{\mu}^{1}(\mathcal{G})$ minimizes the energy functional under the mass constraint, there exists a constant $\lambda>0$ such that u is a solution of the differential system

The differential system

If a function $u \in H_{\mu}^{1}(\mathcal{G})$ minimizes the energy functional under the mass constraint, there exists a constant $\lambda>0$ such that u is a solution of the differential system

$$
\left\{\begin{array}{l}
u^{\prime \prime}+|u|^{p-2} u=\lambda u \quad \text { on each edge } e \text { of } \mathcal{G} \\
\end{array}\right.
$$

The differential system

If a function $u \in H_{\mu}^{1}(\mathcal{G})$ minimizes the energy functional under the mass constraint, there exists a constant $\lambda>0$ such that u is a solution of the differential system

$$
\begin{cases}u^{\prime \prime}+|u|^{p-2} u=\lambda u & \text { on each edge } e \text { of } \mathcal{G} \\ u \text { is continuous } & \text { for every vertex } \mathrm{V} \text { of } \mathcal{G} \\ & \end{cases}
$$

The differential system

If a function $u \in H_{\mu}^{1}(\mathcal{G})$ minimizes the energy functional under the mass constraint, there exists a constant $\lambda>0$ such that u is a solution of the differential system

$$
\begin{cases}u^{\prime \prime}+|u|^{p-2} u=\lambda u & \text { on each edge e of } \mathcal{G} \\ u \text { is continuous } & \text { for every vertex } \mathrm{v} \text { of } \mathcal{G} \\ \sum_{e \succ \mathrm{v}} \frac{d u}{d x_{e}}(\mathrm{v})=0 & \text { for every vertex } \mathrm{v} \text { of } \mathcal{G}\end{cases}
$$

where the symbol $e \succ \mathrm{~V}$ means that the sum ranges of all edges of vertex V and where $\frac{d u}{d x_{e}}(\mathrm{~V})$ is the outgoing derivative of u at V .

The differential system

If a function $u \in H_{\mu}^{1}(\mathcal{G})$ minimizes the energy functional under the mass constraint, there exists a constant $\lambda>0$ such that u is a solution of the differential system

$$
\begin{cases}u^{\prime \prime}+|u|^{p-2} u=\lambda u & \text { on each edge e of } \mathcal{G} \tag{NLS}\\ u \text { is continuous } & \text { for every vertex } \mathrm{v} \text { of } \mathcal{G} \\ \sum_{e \succ \mathrm{v}} \frac{d u}{d x_{e}}(\mathrm{v})=0 & \text { for every vertex } \mathrm{V} \text { of } \mathcal{G}\end{cases}
$$

where the symbol $e \succ \mathrm{~V}$ means that the sum ranges of all edges of vertex V and where $\frac{d u}{d x_{e}}(\mathrm{~V})$ is the outgoing derivative of u at V .

The real line: $\mathcal{G}=\mathbb{R}$

$$
\mathcal{S}_{\mu}(\mathbb{R})=\left\{ \pm \varphi_{\mu}(x+a) \mid a \in \mathbb{R}\right\}
$$

where the soliton φ_{μ} is the unique strictly positive, even, and of mass μ solution to an equation of the form

$$
u^{\prime \prime}+|u|^{p-2} u=\lambda u .
$$

The real line: $\mathcal{G}=\mathbb{R}$

$$
\mathcal{S}_{\mu}(\mathbb{R})=\left\{ \pm \varphi_{\mu}(x+a) \mid a \in \mathbb{R}\right\}
$$

where the soliton φ_{μ} is the unique strictly positive, even, and of mass μ solution to an equation of the form

$$
u^{\prime \prime}+|u|^{p-2} u=\lambda u .
$$

The real line: $\mathcal{G}=\mathbb{R}$

$$
\mathcal{S}_{\mu}(\mathbb{R})=\left\{ \pm \varphi_{\mu}(x+a) \mid a \in \mathbb{R}\right\}
$$

where the soliton φ_{μ} is the unique strictly positive, even, and of mass μ solution to an equation of the form

$$
u^{\prime \prime}+|u|^{p-2} u=\lambda u .
$$

The halfline: $\mathcal{G}=\mathbb{R}^{+}=[0,+\infty[$

Solutions are half-solitons: no more translations!

The positive solution on the 3-star graph

The positive solution on the 5-star graph

A continuous family of solutions on the 4-star graph

A continuous family of solutions on the 4-star graph

A continuous family of solutions on the 4-star graph

A continuous family of solutions on the 4-star graph

A continuous family of solutions on the 4-star graph

A continuous family of solutions on the 4-star graph

A continuous family of solutions on the 4-star graph

A continuous family of solutions on the 4-star graph

A continuous family of solutions on the 4-star graph

Two energy levels

- The « ground state» energy level is given by

$$
c_{\mu}(\mathcal{G})=\inf _{u \in H_{\mu}^{1}(\mathcal{G})} \frac{1}{2} \int_{\mathcal{G}}\left|u^{\prime}\right|^{2}-\frac{1}{p} \int_{\mathcal{G}}|u|^{p} .
$$

Two energy levels

- The « ground state» energy level is given by

$$
c_{\mu}(\mathcal{G})=\inf _{u \in H_{\mu}^{1}(\mathcal{G})} \frac{1}{2} \int_{\mathcal{G}}\left|u^{\prime}\right|^{2}-\frac{1}{p} \int_{\mathcal{G}}|u|^{p} .
$$

- A ground state is a function $u \in H_{\mu}^{1}(\mathcal{G})$ with level $c_{\mu}(\mathcal{G})$. It is a solution of the differential system (NLS).

Two energy levels

- The « ground state» energy level is given by

$$
c_{\mu}(\mathcal{G})=\inf _{u \in H_{\mu}^{1}(\mathcal{G})} \frac{1}{2} \int_{\mathcal{G}}\left|u^{\prime}\right|^{2}-\frac{1}{p} \int_{\mathcal{G}}|u|^{p} .
$$

- A ground state is a function $u \in H_{\mu}^{1}(\mathcal{G})$ with level $c_{\mu}(\mathcal{G})$. It is a solution of the differential system (NLS).
- We can also consider the minimal level attained by the solutions of (NLS):

$$
\sigma_{\mu}(\mathcal{G})=\inf _{u \in \mathcal{S}_{\mu}(\mathcal{G})} \frac{1}{2} \int_{\mathcal{G}}\left|u^{\prime}\right|^{2}-\frac{1}{p} \int_{\mathcal{G}}|u|^{p} .
$$

Two energy levels

- The « ground state» energy level is given by

$$
c_{\mu}(\mathcal{G})=\inf _{u \in H_{\mu}^{1}(\mathcal{G})} \frac{1}{2} \int_{\mathcal{G}}\left|u^{\prime}\right|^{2}-\frac{1}{p} \int_{\mathcal{G}}|u|^{p} .
$$

- A ground state is a function $u \in H_{\mu}^{1}(\mathcal{G})$ with level $c_{\mu}(\mathcal{G})$. It is a solution of the differential system (NLS).
- We can also consider the minimal level attained by the solutions of (NLS):

$$
\sigma_{\mu}(\mathcal{G})=\inf _{u \in \mathcal{S}_{\mu}(\mathcal{G})} \frac{1}{2} \int_{\mathcal{G}}\left|u^{\prime}\right|^{2}-\frac{1}{p} \int_{\mathcal{G}}|u|^{p} .
$$

- A minimal action solution of the problem is a solution $u \in H_{\mu}^{1}(\mathcal{G})$ of the differential problem (NLS) of level $\sigma_{\mu}(\mathcal{G})$.

An example: star graphs

The level of the mass μ soliton on the real line is given by

$$
s_{\mu}=\frac{1}{2} \int_{\mathcal{G}}\left|\varphi_{\mu}^{\prime}\right|^{2}-\frac{1}{p} \int_{\mathcal{G}}\left|\varphi_{\mu}\right|^{p}
$$

For a N-star graph with $N \geq 3$, we have

$$
s_{\mu}=c_{\mu}(\mathcal{G})<\sigma_{\mu}(\mathcal{G})=\frac{N}{2} s_{\mu}
$$

Four cases

An analysis shows that four cases are possible:
A1) $c_{\mu}(\mathcal{G})=\sigma_{\mu}(\mathcal{G})$ and both infima are attained;
A2) $c_{\mu}(\mathcal{G})=\sigma_{\mu}(\mathcal{G})$ and neither infima is attained;
B1) $c_{\mu}(\mathcal{G})<\sigma_{\mu}(\mathcal{G}), \sigma_{\mu}(\mathcal{G})$ is attained but not $c_{\mu}(\mathcal{G})$;
B2) $c_{\mu}(\mathcal{G})<\sigma_{\mu}(\mathcal{G})$ and neither infima is attained.

Four cases

An analysis shows that four cases are possible:
A1) $c_{\mu}(\mathcal{G})=\sigma_{\mu}(\mathcal{G})$ and both infima are attained;
A2) $c_{\mu}(\mathcal{G})=\sigma_{\mu}(\mathcal{G})$ and neither infima is attained;
B1) $c_{\mu}(\mathcal{G})<\sigma_{\mu}(\mathcal{G}), \sigma_{\mu}(\mathcal{G})$ is attained but not $c_{\mu}(\mathcal{G})$;
B2) $c_{\mu}(\mathcal{G})<\sigma_{\mu}(\mathcal{G})$ and neither infima is attained.

Question

Are those four cases really possible for metric graphs?

Answer to the question

Theorem (De Coster, Dovetta, G., Serra (to appear))

For every $p \in] 2,6[$, every $\mu>0$, and every choice of alternative between A1, A2, B1, B2, there exists a metric graph \mathcal{G} where this alternative occurs.

Thanks for your attention!

Overviews of the subject

囦 Adami R., Serra E., Tilli P. Nonlinear dynamics on branched structures and networks https://arxiv.org/abs/1705.00529 (2017)
䡒 Kairzhan A., Noja D., Pelinovsky D. Standing waves on quantum graphs J. Phys. A: Math. Theor. 55243001 (2022)

Videos

R Adami R．Ground states of the Nonlinear Schrodinger Equation on Graphs：an overview（Lisbon WADE） https：／／www．youtube．com／watch？v＝G－FcnRVvoos（2020）
囯 Carl Wieman Nobel Lecture https： ／／www．nobelprize．org／prizes／physics／2001／wieman／lecture／ （2001）
囯 Eric Cornell Nobel Lecture https： ／／www．nobelprize．org／prizes／physics／2001／cornell／lecture （2001）
皿 Wolfgang Ketterle Nobel Lecture https：／／www．nobelprize．org／p rizes／physics／2001／ketterle／lecture／（2001）

Case B1

Case B2

[^0]: ${ }^{1}$ Here we will consider composite bosons, like atoms.

[^1]: ${ }^{1}$ Here we will consider composite bosons, like atoms.

[^2]: ${ }^{1}$ Here we will consider composite bosons, like atoms.

[^3]: ${ }^{1}$ Here we will consider composite bosons, like atoms.

[^4]: ${ }^{1}$ Here we will consider composite bosons, like atoms.

